CRP interacts with promoter-bound sigma54 RNA polymerase and blocks transcriptional activation of the dctA promoter.

نویسندگان

  • Y P Wang
  • A Kolb
  • M Buck
  • J Wen
  • F O'Gara
  • H Buc
چکیده

The cAMP receptor protein (CRP) is an activator of sigma70-dependent transcription. Analysis of the sigma54-dependent dctA promoter reveals a novel negative regulatory function for CRP. CRP can bind to two distant sites of the dctA promoter, sites which overlap the upstream activator sequences for the DctD activator. CRP interacts with Esigma54 bound at the dctA promoter via DNA loop formation. When the CRP-binding sites are deleted, CRP still interacts in a cAMP-dependent manner with the stable Esigma54 closed complex via protein-protein contacts. CRP is able to repress activation of the dctA promoter, even in the absence of specific CRP-binding sites. CRP affects both the final level and the kinetics of activation. The establishment of the repression and its release by the NtrC activator proceed via slow processes. The kinetics suggest that CRP favours a new form of closed complex which interconverts slowly with the classical closed intermediate. Only the latter is capable of interacting with an activator to form an open promoter complex. Thus, Esigma54 promoters are responsive to CRP, a protein unrelated to sigma54 activators, and the repression exerted is the direct result of an interaction between Esigma54 and the CRP-cAMP complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription activation at Class II CRP-dependent promoters: identification of determinants in the C-terminal domain of the RNA polymerase alpha subunit.

Many transcription factors, including the Escherichia coli cyclic AMP receptor protein (CRP), act by making direct contacts with RNA polymerase. At Class II CRP-dependent promoters, CRP activates transcription by making two such contacts: (i) an interaction with the RNA polymerase alpha subunit C-terminal domain (alphaCTD) that facilitates initial binding of RNA polymerase to promoter DNA; and ...

متن کامل

CRP-Cyclic AMP Dependent Inhibition of the Xylene-Responsive σ54-Promoter Pu in Escherichia coli

The expression of σ(54)-dependent Pseudomonas putida Pu promoter is activated by XylR activator when cells are exposed to a variety of aromatic inducers. In this study, the transcriptional activation of the P. putida Pu promoter was recreated in the heterologous host Escherichia coli. Here we show that the cAMP receptor protein (CRP), a well-known carbon utilization regulator, had an inhibitory...

متن کامل

A protein-induced DNA bend increases the specificity of a prokaryotic enhancer-binding protein.

Control of transcription in prokaryotes often involves direct contact of regulatory proteins with RNA polymerase from binding sites located adjacent to the target promoter. Alternatively, in the case of genes transcribed by Escherichia coli RNA polymerase holoenzyme containing the alternate sigma factor sigma54, regulatory proteins bound at more distally located enhancer sites can activate tran...

متن کامل

An arcane role of DNA in transcription activation.

The mechanism by which the cAMP receptor protein (CRP) activates transcription has been investigated using the lac promoter of Escherichia coli. For transcription activation, an interaction between DNA-bound CRP and RNA polymerase is not sufficient. CRP must bind to a site in the same DNA and close to the promoter. CRP action requires an intact spacer DNA to provide a rigid support in building ...

متن کامل

Residue substitutions near the redox center of Bacillus subtilis Spx affect RNA polymerase interaction, redox control, and Spx-DNA contact at a conserved cis-acting element.

Spx, a member of the ArsC protein family, is a regulatory factor that interacts with RNA polymerase (RNAP). It is highly conserved in Gram-positive bacteria and controls transcription on a genome-wide scale in response to oxidative stress. The structural requirements for RNAP interaction and promoter DNA recognition by Spx were examined through mutational analysis. Residues near the CxxC redox ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 1998